2022 第五届传智杯初赛
A-莲子的软件工程学
记得开 long long 就好,防止取绝对值时爆炸
#include<bits/stdc++.h>
using ll = long long;using ul = unsigned long long;using ld = long double;
template <typename T>inline typename std::enable_if<std::is_integral<T>::value>::type read(T &x){ char c;T f=1; while(!isdigit(c=getchar())) if(c=='-')f=-1; x=(c&15); while(isdigit(c=getchar())) x= (x<<1) + (x<<3) + (c&15); x*=f;}
template <typename T, typename... A> void read(T &value, A &..._t) { read(value); read(_t...);}
#define rep(NAME, MAX) for(decltype(MAX) NAME = 0; NAME < MAX; i++)#define rep1(NAME, MAX) for(decltype(MAX) NAME = 1; NAME <= MAX; i++)#define repv0(NAME, START) for(decltype(START) NAME = START; NAME >= 0; NAME--)#define repv1(NAME, START) for(decltype(START) NAME = START; NAME >= 1; NAME--)
// main functionvoid solve(const std::size_t testcase){ //coding here ll a,b; std::cin >> a >> b; ll sig = b / std::abs(b); std::cout << std::abs(a) * sig;}
#ifdef int#undef int#endifint main(){ std::size_t t = 1; // std::cin >> t; for(std::size_t i = 1; i <= t; i++){ solve(t); } return 0;}
B-莲子的机械动力学
从低位开始逐位相加,然后取模即可
#include <bits/stdc++.h>
using ll = long long;using ul = unsigned long long;using ld = long double;
// ------------ Minify with Regex "^\s*(?!#)(.*)\n" -> " " ------------// clang-format offtemplate <class A, class B> std::ostream &operator<<(std::ostream &s, std::pair<A, B> const &a) { return s << "(" << std::get<0>(a) << ", " << std::get<1>(a) << ")"; } template <size_t n, typename... T> typename std::enable_if<(n >= sizeof...(T))>::type print_tuple(std::ostream &, const std::tuple<T...> &) {} template <size_t n, typename... T> typename std::enable_if<(n < sizeof...(T))>::type print_tuple(std::ostream &os, const std::tuple<T...> &tup) { if (n != 0) os << ", "; os << std::get<n>(tup); print_tuple<n + 1>(os, tup); } template <typename... T> std::ostream &operator<<(std::ostream &os, const std::tuple<T...> &tup) { os << "("; print_tuple<0>(os, tup); return os << ")"; } template <class T> std::ostream &print_collection(std::ostream &s, T const &a) { s << '['; for (auto it = std::begin(a); it != std::end(a); ++it) { s << *it; if (it != std::prev(end(a))) s << ", "; } return s << ']'; } template <class T, class U> std::ostream &operator<<(std::ostream &s, std::map<T, U> const &a) { return print_collection(s, a); } template <class T> std::ostream &operator<<(std::ostream &s, std::set<T> const &a) { return print_collection(s, a); } template <class T> std::ostream &operator<<(std::ostream &s, std::vector<T> const &a) { return print_collection(s, a); } void __debug_out() { std::cerr << std::endl; } template <typename T, class = typename std::enable_if<std::is_pointer<T>::value>::type> void __debug_out(T beg, T end) { std::cerr << '['; for (auto it = beg; it != end; it++) { std::cerr << *it; if (it != std::prev(end)) { std::cerr << ", "; } } std::cerr << ']' << std::endl; } template <typename H, typename... Tail> void __debug_out(H h, Tail... T) { std::cerr << " " << h; __debug_out(T...); }#ifndef ONLINE_JUDGE#define debug(...) std::cerr << "[" << #__VA_ARGS__ << "]:", __debug_out(__VA_ARGS__)#else#define debug(...) do {} while (0)#endif// clang-format on
template <typename T>inline typename std::enable_if<std::is_integral<T>::value>::type read(T &x) { char c; T f = 1; while (!isdigit(c = getchar())) if (c == '-') f = -1; x = (c & 15); while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15); x *= f;}
template <typename T, typename... A> void read(T &value, A &..._t) { read(value); read(_t...);}
#define rep(NAME, MAX) for (decltype(MAX) NAME = 0; NAME < MAX; NAME++)#define replr(NAME, START, END) for(ll _sig = ((ll(END)-ll(START))/ std::abs(ll(END)-ll(START))), NAME = START; NAME != END; NAME+=_sig)#define replrci(NAME, START, END) for(ll _sig = ((ll(END)-ll(START))/ std::abs(ll(END)-ll(START))), NAME = START+_sig; NAME-_sig != END; NAME+=_sig)
#define int ll// main functionvoid solve(const std::size_t testcase) { int n, m; read(n, m); int len = std::max(n, m)+1; std::vector<int> a(len, 0); std::vector<int> b(len, 0); std::vector<int> ans(len, 0);
replrci(i, n, 0) read(a[i]); replrci(i, m, 0) read(b[i]); rep(i, len){ int bin = i + 2; ans[i] += a[i] + b[i]; if(ans[i] >= bin){ ans[i+1] += ans[i] / bin; ans[i] %= bin; } } bool nzero = false; replrci(i, ans.size(), 0){ if(ans[i] == 0 && !nzero) continue; if(ans[i] != 0) nzero = true; std::cout << ans[i] << ' '; } if(!nzero) std::cout << 0;}
#ifdef int#undef int#endifint main() { std::size_t t = 1; // std::cin >> t; for (std::size_t i = 1; i <= t; i++) { solve(t); } return 0;}
C-莲子的排版设计学
全读进来,粗略统计一下输出结果即可。
值得一提的是如果想要统计数字 x 是几位数字,可以用 计算。
如果不愿意自己对齐空格,可以动态构造格式化字符串,然后用 std::vformat
或者 printf
#include <bits/stdc++.h>// clang-format off// ------------ Minify with Regex "^\s*(?!#)(.*)\n" -> " " ------------template <class A, class B> std::ostream &operator<<(std::ostream &s, std::pair<A, B> const &a) { return s << "(" << std::get<0>(a) << ", " << std::get<1>(a) << ")"; } template <size_t n, typename... T> typename std::enable_if<(n >= sizeof...(T))>::type print_tuple(std::ostream &, const std::tuple<T...> &) {} template <size_t n, typename... T> typename std::enable_if<(n < sizeof...(T))>::type print_tuple(std::ostream &os, const std::tuple<T...> &tup) { if (n != 0) os << ", "; os << std::get<n>(tup); print_tuple<n + 1>(os, tup); } template <typename... T> std::ostream &operator<<(std::ostream &os, const std::tuple<T...> &tup) { os << "("; print_tuple<0>(os, tup); return os << ")"; } template <class T> std::ostream &print_collection(std::ostream &s, T const &a) { s << '['; for (auto it = std::begin(a); it != std::end(a); ++it) { s << *it; if (it != std::prev(end(a))) s << ", "; } return s << ']'; } template <class T, class U> std::ostream &operator<<(std::ostream &s, std::map<T, U> const &a) { return print_collection(s, a); } template <class T> std::ostream &operator<<(std::ostream &s, std::set<T> const &a) { return print_collection(s, a); } template <class T> std::ostream &operator<<(std::ostream &s, std::vector<T> const &a) { return print_collection(s, a); } void __debug_out() { std::cerr << std::endl; } template <typename T, class = typename std::enable_if<std::is_pointer<T>::value>::type> void __debug_out(T beg, T end) { std::cerr << '['; for (auto it = beg; it != end; it++) { std::cerr << *it; if (it != std::prev(end)) { std::cerr << ", "; } } std::cerr << ']' << std::endl; } template <typename H, typename... Tail> void __debug_out(H h, Tail... T) { std::cerr << " " << h; __debug_out(T...); }#ifndef ONLINE_JUDGE#define debug(...) std::cerr << "[" << #__VA_ARGS__ << "]:", __debug_out(__VA_ARGS__)#else#define debug(...) do {} while (0)#endif
using ll = long long; using ul = unsigned long long; using ld = long double;template <typename T>inline typename std::enable_if<std::is_integral<T>::value>::type read(T &x){ char c;T f=1; while(!isdigit(c=getchar())) if(c=='-')f=-1; x=(c&15); while(isdigit(c=getchar())) x= (x<<1) + (x<<3) + (c&15); x*=f;}template <typename T, typename... A> void read(T &value, A &..._t) { read(value), read(_t...); }#define rep(NAME, MAX) for(decltype(MAX) NAME = 0; NAME < MAX; NAME++)#define replr(NAME, START, END) for(ll _sig = ((ll(END)-ll(START))/ std::abs(ll(END)-ll(START))), NAME = START; NAME != END; NAME+=_sig)#define replrci(NAME, START, END) for(ll _sig = ((ll(END)-ll(START))/ std::abs(ll(END)-ll(START))), NAME = START+_sig; NAME-_sig != END; NAME+=_sig)// clang-format on
// coding hereinline void solve(const std::size_t testcase) { std::string line; std::vector<std::string> lines; while (std::getline(std::cin, line)) { lines.push_back(line); } ll linenum = std::log10(lines.size()) + 1; std::string fmt = "%" + std::to_string(linenum) + "lld %s\n";
rep(i,lines.size()){ printf(fmt.data(), i+1, lines[i].data()); }}
#ifdef int#undef int#endifint main() { std::size_t t = 1; // std::cin >> t; for (std::size_t i = 1; i <= t; i++) solve(t); return 0;}
D-莲子的物理热力学
贪心
首先要保证自己没有读错题,题目中的中的并不是每次自己选择一段区间
题目中给了我们 次进行操作的机会,我们可以确定当进行一次操作时,只会让当前的极差不变 或者变小,也就是说我们可以尽可能多的进行操作。
我们不可避免的要先让最大值变为最小值,再让最小值变为次大值。
我们可以将 个数变大,再将 个数变小,需要进行 次操作。或者将 个数变小,再将 个数变大, 总共进行 次 操作,也就是说,最终操作次数应该是 。
根据这个式子,我们可以推出以下结论:
当我们枚举 时,即可算出 的取值,每次枚举都能求出一个极差,枚举所有值,找出极差的最小值即可。
// clang-format off#include <bits/stdc++.h>using ll = long long; using ul = unsigned long long; using ld = long double;template <typename T> inline typename std::enable_if<std::is_integral<T>::value>::type read(T &x){ char c;T f=1; while(!isdigit(c=getchar())) if(c=='-')f=-1; x=(c&15); while(isdigit(c=getchar())) x= (x<<1) + (x<<3) + (c&15); x*=f; } template <typename T, typename... A> inline void read(T &value, A &..._t) { read(value), read(_t...); }void solve(const std::size_t testcase);#define rep(NAME, MAX) for(decltype(MAX) NAME = 0; NAME < MAX; NAME++)#define rep1(NAME, MAX) for(decltype(MAX) NAME = 1; NAME <= MAX; NAME++)#define repv0(NAME, START) for(decltype(START) NAME = START; NAME >= 0; NAME--)#define repv1(NAME, START) for(decltype(START) NAME = START; NAME >= 1; NAME--)int main() { std::size_t t = 1; // std::cin >> t; rep1(i, t) solve(t); return 0;}// clang-format on#define int llint n, m;std::vector<ll> seq;
// coding herevoid solve(const std::size_t testcase) { read(n, m); seq.resize(n); rep(i, n) read(seq[i]); std::sort(seq.begin(), seq.end());
if (m == 0) { std::cout << seq[seq.size() - 1] - seq[0]; return; } if (n == 1) { std::cout << 0; return; }
ll ans = std::numeric_limits<ll>::max();
for (int u = 0; u <= m && u < seq.size(); u++) { int v; if (u * 3 <= m) { v = m - 2 * u; } else { v = (m - u) / 2; } if (u + v >= seq.size()) { ans = 0; break; } else { ans = std::min(ans, seq[seq.size() - v - 1] - seq[u]); } } std::cout << ans;}
E-莲子的市场经济学
二分
首先通过瞪眼法找通项公式,我们把一个周期看作一组,可以发现第一个组的峰值为 ,第二个组的峰值为 … 而且很容易发现每组的数字数量是一个等差数列,通项公式为
也就是说第 组最后一个数字是 ,第一个数字是
由于 可以通过二分的方式来寻找 属于哪一组
接下来就是简单的数学题了:
// clang-format off#include <bits/stdc++.h>using ll = long long; using ul = unsigned long long; using ld = long double;template <typename T> inline typename std::enable_if<std::is_integral<T>::value>::type read(T &x){ char c;T f=1; while(!isdigit(c=getchar())) if(c=='-')f=-1; x=(c&15); while(isdigit(c=getchar())) x= (x<<1) + (x<<3) + (c&15); x*=f; } template <typename T, typename... A> inline void read(T &value, A &..._t) { read(value), read(_t...); }void solve(const std::size_t testcase);#define rep(NAME, MAX) for(decltype(MAX) NAME = 0; NAME < MAX; NAME++)#define rep1(NAME, MAX) for(decltype(MAX) NAME = 1; NAME <= MAX; NAME++)#define repv0(NAME, START) for(decltype(START) NAME = START; NAME >= 0; NAME--)#define repv1(NAME, START) for(decltype(START) NAME = START; NAME >= 1; NAME--)int main() { std::size_t t = 1; read(t); rep1(i, t) solve(t); return 0;}// clang-format on
ll group_index_maxk(ll n) { return 1 + 3 * n + 2 * n * n; }
// coding herevoid solve(const std::size_t testcase) { ll k; read(k); if (k == 1) { std::cout << 0 << "\n"; return; }
ll l = 1, r = 2e9; ll group_idx; while (l <= r) { group_idx = l + (r - l) / 2; ll maxk = group_index_maxk(group_idx); ll mink = group_index_maxk(group_idx - 1)+1; if (mink <= k && k <= maxk) break; if (maxk < k) { l = group_idx + 1; } else if (k < mink) { r = group_idx - 1; } }
ll group_min_k = group_index_maxk(group_idx - 1) + 1; ll group_max_k = group_index_maxk(group_idx); ll group_peak_ak = group_idx; ll group_mid_k = group_min_k + (group_max_k - group_min_k) / 2; ll group_peak_span = (group_mid_k - group_min_k) / 2; ll top_peak_k = group_min_k + group_peak_span; ll bottom_peak_k = group_mid_k + group_peak_span;
if (k == group_min_k) { std::cout << 0 << "\n"; } else if (k > group_mid_k) { if (k > bottom_peak_k) { std::cout << -group_idx + (k - bottom_peak_k) << "\n"; } else { std::cout << -(k - group_mid_k) << "\n"; } } else { if (k > top_peak_k) { std::cout << group_idx - (k - top_peak_k) << "\n"; } else { std::cout << k - group_min_k << "\n"; } }}
F-二人的大富翁游戏
大模拟,不想写
E-二人的花纹纸游戏
染色二维前缀和
不妨看看官方题解?
它的题面的使用顺序正好和我相反,迷惑了半天
// clang-format off#include <bits/stdc++.h>using ll = long long; using ul = unsigned long long; using ld = long double;template <typename T> inline typename std::enable_if<std::is_integral<T>::value>::type read(T &x){ char c;T f=1; while(!isdigit(c=getchar())) if(c=='-')f=-1; x=(c&15); while(isdigit(c=getchar())) x= (x<<1) + (x<<3) + (c&15); x*=f; } template <typename T, typename... A> inline void read(T &value, A &..._t) { read(value), read(_t...); }void solve(const std::size_t testcase);#define rep(NAME, MAX) for(decltype(MAX) NAME = 0; NAME < MAX; NAME++)#define rep1(NAME, MAX) for(decltype(MAX) NAME = 1; NAME <= MAX; NAME++)#define repv0(NAME, START) for(decltype(START) NAME = START; NAME >= 0; NAME--)#define repv1(NAME, START) for(decltype(START) NAME = START; NAME >= 1; NAME--)int main() { std::size_t t = 1; // read(t); // std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout.tie(nullptr); rep1(i, t) solve(t); return 0;}template <class A, class B> std::ostream &operator<<(std::ostream &s, std::pair<A, B> const &a) { return s << "(" << std::get<0>(a) << ", " << std::get<1>(a) << ")"; } template <size_t n, typename... T> typename std::enable_if<(n >= sizeof...(T))>::type print_tuple(std::ostream &, const std::tuple<T...> &) {} template <size_t n, typename... T> typename std::enable_if<(n < sizeof...(T))>::type print_tuple(std::ostream &os, const std::tuple<T...> &tup) { if (n != 0) os << ", "; os << std::get<n>(tup); print_tuple<n + 1>(os, tup); } template <typename... T> std::ostream &operator<<(std::ostream &os, const std::tuple<T...> &tup) { os << "("; print_tuple<0>(os, tup); return os << ")"; } template <class T> std::ostream &print_collection(std::ostream &s, T const &a) { s << '['; for (auto it = std::begin(a); it != std::end(a); ++it) { s << *it; if (it != std::prev(end(a))) s << ", "; } return s << ']'; } template <class T, class U> std::ostream &operator<<(std::ostream &s, std::map<T, U> const &a) { return print_collection(s, a); } template <class T> std::ostream &operator<<(std::ostream &s, std::set<T> const &a) { return print_collection(s, a); } template <class T> std::ostream &operator<<(std::ostream &s, std::vector<T> const &a) { return print_collection(s, a); } void __debug_out() { std::cerr << std::endl; } template <typename T, class = typename std::enable_if<std::is_pointer<T>::value>::type> void __debug_out(T beg, T end) { std::cerr << '['; for (auto it = beg; it != end; it++) { std::cerr << *it; if (it != std::prev(end)) { std::cerr << ", "; } } std::cerr << ']' << std::endl; } template <typename H, typename... Tail> void __debug_out(H h, Tail... T) { std::cerr << " " << h; __debug_out(T...); }#ifndef ONLINE_JUDGE#define debug_do if(true)#else#define debug_do if(false)#endif#define debug(...) debug_do std::cerr << "[" << #__VA_ARGS__ << "]:", __debug_out(__VA_ARGS__)// clang-format on
#define int lltemplate <typename T> using vvector = std::vector<std::vector<T>>;const int modd = 998244353;
void solve(const std::size_t testcase) { int n, m, r, c; read(n, m); vvector<int> A(n + 1, std::vector<int>(m + 1)); rep1(i, n) rep1(j, m) read(A[i][j]); read(r, c); vvector<int> B(r + 1, std::vector<int>(c + 1)); rep1(i, r) rep1(j, c) read(B[i][j]);
vvector<int> pre(A); for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { int irj = i - r >= 0 ? pre[i - r][j] : 0; irj %= modd; int ijc = j - c >= 0 ? pre[i][j - c] : 0; ijc %= modd; int irjc = (i - r) >= 0 && (j - c) >= 0 ? pre[i - r][j - c] : 0; irjc %= modd; pre[i][j] = (pre[i][j] + irj) % modd; pre[i][j] = (pre[i][j] + ijc) % modd; pre[i][j] = (pre[i][j] - irjc + modd) % modd; } }
debug("Done"); debug(n, m, r, c); int q; read(q); rep(i, q) { int x1, y1, x2, y2; read(x1, y1, x2, y2); debug(x1, y1, x2, y2); int ans = 0; for (int i = 1; i <= std::min(r, x2 - x1 + 1); i++) { for (int j = 1; j <= std::min(c, y2 - y1 + 1); j++) { if (B[i][j] == 0) { debug(i, j); int rx1 = x1 + i - 1; int rx2 = rx1 + (x2 - rx1) / r * r; int ry1 = y1 + j - 1; int ry2 = ry1 + (y2 - ry1) / c * c; debug(rx1, rx2, ry1, ry2); debug(rx1 - c, ry2 - r);
int ret = pre[rx2][ry2]; int rx1r = rx1 - r >= 0 ? pre[rx1 - r][ry2] : 0; int ry1c = ry1 - c >= 0 ? pre[rx2][ry1 - c] : 0; int rx1rry1c = rx1 - r >= 0 && ry1 - c >= 0 ? pre[rx1 - r][ry1 - c] : 0;
ret = (ret - rx1r + modd) % modd; ret = (ret - ry1c + modd) % modd; ret = (ret + rx1rry1c) % modd; ans = (ans + ret) % modd; } } } std::cout << ans << "\n"; }}